436 research outputs found

    Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses

    Get PDF
    The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA)-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT)-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway

    Macro and nano dimensional plant fiber reinforcements for Cementitious Composites

    Get PDF
    uncorrected proofNowadays, the use of plant fibers in the civil construction industry is growing rapidly due to their low cost, light weight and good specific mechanical properties, lower health hazard, and environmental benefits. Nanodimensional fibers derived from plants such as nanocellulose are also getting considerable attention due to their excellent mechanical properties. This chapter discusses these different types of plant fibers and their derivatives which have huge application potential in the civil construction sector. The influence of plant fibers on microstructure as well as on physical–mechanical properties of cementitious composites are discussed in detail. The challenges regarding plant fiber processing and dispersion, the fiber/matrix interface, and the durability of plant fiber-cement composites are also addressed. The application of nanocellulose in polymer composites has been included in this chapter just to provide the readers sufficient background information and techniques to inspire engineered cement-based composites. Finally, the chapter concludes with the current application of plant fibers in civil construction and the future trends(undefined)info:eu-repo/semantics/publishedVersio

    Preparation and control of a cavity-field state through atom-driven field interaction: towards long-lived mesoscopic states

    Full text link
    The preparation of mesoscopic states of the radiation and matter fields through atom-field interactions has been achieved in recent years and employed for a range of striking applications in quantum optics. Here we present a technique for the preparation and control of a cavity mode which, besides interacting with a two-level atom, is simultaneously submitted to linear and parametric amplification processes. The role of the amplification-controlling fields in the achievement of real mesoscopic states, is to produce highly-squeezed field states and, consequently, to increase both: i) the distance in phase space between the components of the prepared superpositions and ii) the mean photon number of such superpositions. When submitting the squeezed superposition states to the action of similarly squeezed reservoirs, we demonstrate that under specific conditions the decoherence time of the states becomes independent of both the distance in phase space between their components and their mean photon number. An explanation is presented to support this remarkable result, together with a discussion on the experimental implementation of our proposal. We also show how to produce number states with fidelities higher than those derived as circular states

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    Physical and antibiotic stresses require activation of the RsbU phosphatase to induce the general stress response in Listeria monocytogenes

    Get PDF
    Among pathogenic strains of Listeria monocytogenes, the σB transcription factor has a pivotal role in the outcome of food-borne infections. This factor is activated by diverse stresses to provide general protection against multiple challenges, including those encountered during gastrointestinal passage. It also acts with the PrfA regulator to control virulence genes needed for entry into intestinal lumen cells. Environmental and nutritional signals modulate σB activity via a network that operates by the partner switching mechanism, in which protein interactions are controlled by serine phosphorylation. This network is well characterized in the related bacterium Bacillus subtilis. A key difference in Listeria is the presence of only one input phosphatase, RsbU, instead of the two found in B. subtilis. Here, we aim to determine whether this sole phosphatase is required to convey physical, antibiotic and nutritional stress signals, or if additional pathways might exist. To that end, we constructed L. monocytogenes 10403S strains bearing single-copy, σB-dependent opuCA–lacZ reporter fusions to determine the effects of an rsbU deletion under physiological conditions. All stresses tested, including acid, antibiotic, cold, ethanol, heat, osmotic and nutritional challenge, required RsbU to activate σB. This was of particular significance for cold stress activation, which occurs via a phosphatase-independent mechanism in B. subtilis. We also assayed the effects of the D80N substitution in the upstream RsbT regulator that activates RsbU. The mutant had a phenotype consistent with low and uninducible phosphatase activity, but nonetheless responded to nutritional stress. We infer that RsbU activity but not its induction is required for nutritional signalling, which would enter the network downstream from RsbU

    Comparison of different removal techniques for selected pharmaceuticals

    Full text link
    [EN] Recently, there is an emergence of endocrine-disrupting compounds, pharmaceuticals, and personal care products (EDC/PPCPs) as important pollutants to remove from drinking water and reclaimed wastewater. In this work, the efficiency of removing pharmaceuticals (PCs) from model aqueous solutions and raw wastewater with ultrafiltration (UF), nanofiltration (NF), activated carbon adsorption (AC), biological methods (SBR) and oxidation with ClO2 was investigated. Some treatments have also been used as combined processes: UF + NF, UF +AC, SBR + ClO2. Ibuprofen, Acetaminophen, Diclofenac, Sulfamethoxazole, Clonazepam, and Diazepam were selected as model compounds. In order to evaluate their removal, PC solutions were also considered at several operating conditions (pH, conductivity, concentration, and temperature), andoptimal conditions were obtained. Experiments wereperformedatusual PCconcentrations in wastewaters: 1000 ng/L for Ibuprofen and Acetaminophen, 300 ng/L for Diclofenac, Sulfamethoxazole, Clonazepam, and Diazepam. Separation was evaluated by liquid chromatography¿mass spectroscopy. Results indicated that the removal efficiency depends on their Log KOW, which is intrinsically related to their hydrophobicity and then,to their adsorption onto the surface (UF, NF, andAC).Also, NF,AC, and combined processes (UF + NF, UF +AC) were the most suitable separation techniques to obtain high removal efficiencies for most of the PCs used, except for Acetaminophen (which showed great removal efficacy using SBR). UF presented low removal yields for all PCs tested. ClO2 treatment was more effective at high concentration (50 mg ClO2/L). Furthermore, results also showed that there are significant differences on the performance of the processes applied and which treatment is the most effective for each PC analyzed. © 2015 Elsevier Ltd. All rights reserved.The authors of this work wish to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the project CTM2013-42342-P.Vona, A.; Di Martino, F.; García-Ivars, J.; Picó, Y.; Mendoza Roca, JA.; Iborra Clar, MI. (2015). Comparison of different removal techniques for selected pharmaceuticals. Journal of Water Process Engineering. 5:48-57. https://doi.org/10.1016/j.jwpe.2014.12.011S4857

    Clinical Features and Prognosis of Spontaneous Bacterial Peritonitis in Korean Patients with Liver Cirrhosis: A Multicenter Retrospective Study

    Get PDF
    BACKGROUND/AIMS: Although early recognition and treatment with effective antibiotics have lead to improvements in the prognosis of patients with spontaneous bacterial peritonitis (SBP), it remains to be a serious complication in cirrhotic patients. This study was designed to evaluate the clinical manifestations and prognosis of patients with liver cirrhosis and SBP in Korea. METHODS: This was a multicenter retrospective study examining 157 episodes of SBP in 145 patients with cirrhosis. SBP was diagnosed based on a polymorphonuclear cell count in ascitic fluid of >250 cells/mm(3) in the absence of data compatible with secondary peritonitis. RESULTS: The mean age of the cohort was 56 years, and 121 (77%) of the 157 episodes of SBP occurred in men. Microorganisms were isolated in 66 episodes (42%): Gram-negative bacteria in 54 (81.8%), Gram-positive in 11 (16.7%), and Candida in 1. Isolated Gram-negative organisms were resistant to third-generation cephalosporin in 6 cases (17%), to ciprofloxacin in 11 (20.8%), and to penicillin in 33 (62.3%). The treatment failure and in-hospital mortality rates were 12.1% and 21%, respectively. A high Model of End-Stage Liver Disease (MELD) score, SBP caused by extended-spectrum beta-lactamase-producing organisms, and hepatocellular carcinoma were independent prognostic factors of high in-hospital mortality. CONCLUSIONS: SBP remains to be a serious complication with high in-hospital mortality, especially in patients with a high MELD score.ope

    Core Proteome of the Minimal Cell: Comparative Proteomics of Three Mollicute Species

    Get PDF
    Mollicutes (mycoplasmas) have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a ‘minimal cell’: a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions
    corecore